top of page

Трансформатор Теслы «на пальцах»

Несмотря на то, что сама по себе “Тесла” очень проста, многие из тех, кто пытаются ее сконструировать не понимают принцип ее работы. В этой части я помогу вам разобраться – какие виды тесел бывают, что у них общего и в чем они отличаются. Эта статья предполагает, что вы знаете, что такое электрический ток и чем конденсатор отличается от катушки. Я буду стараться излагать все, как можно проще, но, к сожалению, я не всесилен. Если какие-либо моменты останутся непонятными, прошу прочитать еще раз, если и это не поможет, прошу оставить комментарий.Трансформатор ТеслаСуществует много названий для трансформатора Тесла. Все они обозначают одно и то-же устройство. Самое корректное название по моему мнению — “Трансформатор Тесла”. Часто трансформатор называют его типом – СГТЦ, ССТЦ итп.Принцип работы Трансформатора Тесла.Трансформатор Тесла состоит из двух обмоток[1] – первичной (Lp) и вторичной (Ls) (их чаще называют “первичка” и “вторичка”). К первичной обмотке подводится переменное напряжение и она создает магнитное поле. При помощи этого поля энергия из первичной обмотки передается во вторичную. В этом трансформатор тесла очень похож на самый обычный “железный” трансформатор.Схема Трансформатора ТеслаВторичная обмотка вместе с собственной паразитной (Cs) емкостью образуют колебательный контур, который накапливает переданную ему энергию. Часть времени вся энергия в колебательном контуре храниться в виде напряжения. Таким образом, чем больше энергии мы вкачаем в контур, тем больше напряжения получим.Энергия в колебательном контуреТрансформатор Тесла обладает тремя основными характеристиками –резонансной частотой вторичного контура, коэффициентом связипервичной и вторичной обмоток, добротностью вторичного контура. Что такое резонансная частота колебательного контура, читателю должно быть известно. Я же подробнее остановлюсь на коэффициенте связи и добротности. Коэффициент связи определяет насколько быстро энергия из первичной обмотки передается во вторичную, а добротность – насколько долго колебательный контур может сохранять энергию. Есть одна очень хорошая аналогия — аналогия с качелями Для того, чтобы лучше понять, как колебательный контур накапливает энергию, и откуда в тесле берется такое большое напряжение, представим качели, которые раскачивает здоровенный мужик. Качели – это колебательный контур, мужик– это первичная обмотка. Скорость качель – это ток в во вторичной обмотке, а высота подъема – наше долгожданное напряжение. Мужик толкает качели, и, таким образом передает в них энергию. И вот, за несколько толчков, качели раскачались и подлетают так высоко, как это только возможно – они накопили много энергии. Тоже самое происходит и с теслой, только когда энергии становится слишком много, происходит пробой воздуха и мы видим наши красивущий стример. Естественно, раскачивать качели нужно не абы-как, а в точном согласии с их собственными колебаниями. Количество колебаний качель в секунду называется “резонансная частота”. Участок траектории полета качели, на протяжении которого мужик их толкает определяет коэффициент связи. Если мужик будет постоянно держать качели своей здоровенной ручищей, то он раскачает их очень быстро, но качели смогут отклониться только на длину руки мужика. В таком случае говорят, что коэффициент связи равен единице. Наши качели с большим коэффициентом связи — это аналог обычного трансформатора. Теперь рассмотрим ситуация, когда мужик только немного подталкивает качели. В этом случае коэффициент связи мал, а качели отклоняются намного дальше – мужик теперь их не держит. Качели придется раскачивать дольше, но с этим справится даже очень хилый мужик, чуть-чуть толкая их каждый период колебаний. Такие качели и есть аналогом трансформатора Тесла. Итак, чем больше коэффициент связи, тем быстрее во вторичный контур накачивается энергия, но при этом выходное напряжение теслы получается меньше. Теперь рассмотрим добротность. Добротность – это противоположность трению в качелях. Если трение очень большое (низкая добротность), то мужик своими слабенькими толчками не сможет их раскачать. Таким образом, коэффициент связи и добротность контура должны быть согласованны для достижения максимальной высоты качель (максимальной длинны стримера). Так-как добротность вторичной обмотки в трансформаторе Тесла – величина не постоянная (она зависит от стримера), то согласовать эти две величины очень не просто, и поэтому просто подбирают опытным путем.Основные виды катушек ТеслаСам Тесла изготавливал Трансформатор только одного типа – на разряднике (СГТЦ). С тех пор элементная база сильно улучшилась, и появилось множество разных типов катушек, по аналогии их продолжают называть катушками Тесла. Типы катушек принято называть из английскими аббревиатурами. Если название необходимо сказать на русском языке, английские аббревиатуры просто говорят русскими буквами без перевода.Самые распространенные типы катушек тесла:• SGTC (СГТЦ, Spark Gap Tesla Coil) – трансформатор тесла на разряднике. Самая первая и “классическая” конструкция (ее использовал сам Тесла). В качестве ключевого элемента использует разрядник. В маломощных конструкциях разрядник – просто два куска провода, находящихся на некотором расстоянии, а в мощных – сложные вращающиеся разрядники. Трансформаторы этого типа идеальны если вам нужна только большая длинна стримера.• VTTC (ВТТЦ, Vacuum Tube Tesla Coil) – трансформатор тесла на лампе. В качестве ключевого элемента используется мощная радиолампа. Такие трансформаторы могут работать в непрерывном режиме и выдавать толстые, “жирные” стримеры. Этот тип чаще всего используют для высокочастотных тесел, которые из-за характерного вида своих стримеров получили название “факельник”.• SSTC (ССТЦ, Solid State Tesla Coil) – трансформатор тесла, в котором в качестве ключевого элемента используются полупроводники. Обычно это MOSFET или IGBT транзисторы. Этот тип трансформаторов может работать в непрерывном режиме. Внешний вид стримеров, создаваемых этой катушкой может быть самый различный. Этим типом Тесел проще всего управлять (играть музыку, к примеру).• DRSSTC (ДРССТЦ, ДРка, Dual Resonant Solid State Tesla Coil) – трансформатор с двумя резонансными контурами, в котором в качестве ключей используются полупроводники, в подавляющем большинстве случаев, это IGBT транзисторы. ДРССТЦ – самый сложный в изготовлении и настройке тип трансформаторов тесла. Характерная длинна стримеров трансформатора этого типа немного меньше чем у SGTC, а управляемость немногим хуже, чем у SSTC.Для управления внешним видом стримеров придумали так называемый прерыватель. Изначально с помощью этого устройства останавливали катушку для того, чтобы дать возможность зарядится конденсатором и остыть разрядному терминалу, и, засчет этого, увеличить длину стримеров. Но в последнее время в прерыватели начали встраивать дополнительные функции, к примеру, научили катушки Тесла играть музыку.Основные детали катушки теслаНе смотря на то, что существует несколько видов катушек тесла, у всех них есть общие черты. Расскажу о основных деталях теслы сверху вниз.Основные детали катушки тесла• Тороид – выполняет три функции. Первая – уменьшение резонансной частоты – это актуально для SSTC и DRSSTC, так как силовые полупроводники плохо работают на высоких частотах. Вторая – накопление энергии перед образованием стримера. Чем больше тороид, тем больше в нем накоплено энергии и, в момент, когда воздух пробивается, тороид отдает эту энергию в стример, таким образом, увеличивая его. Для того, чтобы извлечь выгоду из этого явления в теслах с непрерывной накачкой энергии, используют прерыватель. Третяя – формирование электростатического поля, которое отталкивает стример от вторичной обмотки теслы. От части, эту функцию выполняет сама вторичная обмотка, но тороид может ей хорошо помочь. Именно по причине электростатического отталкивания стримера, он не бьет по кратчайшему пути во вторичку. От использования тороидоа больше всего выиграют теслы с импульсной накачкой – SGTC, DRSSTC и теслы с прерывателями. Типичный внешний диаметр тороида – два диаметра вторички [4]. Тороиды обычно изготавливают из алюминиевой гофры, хотя есть множество других технологий. • Вторичка – основная деталь теслы. Типичное отношение длинны обмотки теслы к ее диаметру намотки 4:1 – 5:1. Диаметр провода для намотки теслы обычно выбирают так, чтобы на вторичке помещалось 800-1200 витков. ВНИМАНИЕ, повторюсь еще раз. Не стоит мотать слишком много витков на вторичке тонким проводом. Витки на вторичке нужно распологать как можно плотнее друг к другу [5]. Для защиты от царапин и от разлезания витков, вторичные обмотки обычно покрывают лаками. Чаще всего для этого применяются эпоксидная смола и полиуретановый лак. Лакировать стоит очень тонкими слоями. Обычно, на вторичку, наносят минимум 3-5 тонких слоев лака. Мотают вторичку на воздуховодных (белых) или, что хуже, канализационных (серых) ПВХ трубах. Найти эти трубы можно в любом строительном магазине.• Защитное кольцо – предназначено для того, чтобы стример, попав в первичную обмотку не вывел электронику из строя. Эта деталь устанавливается на теслу, если длинна стримера больше длинны вторичной обмотки. Представляет собой незамкнутый виток медного провода (чаще всего, немного толще, чем тот из которого изготавливается первичка). Защитное кольцо заземляется на общее заземление отдельным проводом.• Первичная обмотка – обычно изготавливается из медной трубы для кондиционеров. Должна обладать очень маленьким сопротивлением для того, чтобы по ней можно было пропускать большой ток. Толщину трубки обычно выбирают на глаз, в подавляющем большинстве случаев, выбор падает на 6 мм трубку. Так-же в качестве первички используют провода большего сечения. Относительно вторичной обмотки устанавливается так, чтобы обеспечить нужный коэффициент связи. Часто играет роль построечного элемента в тех теслах, где первичный контур является резонансным. Точку подключения к первичке делают подвижной и ее перемещением изменяют резонансную частоту первичного контура. Первичные обмотки обычно делают цилиндрическими, плоскими или коническим. Обычно, плоские первички используются в SGTC, конические- в SGTC и DRSSTC, а цилиндрические — в SSTC, DRSSTC и VTTC.Первичная обмотка • Заземление – как не странно, тоже очень важная деталь теслы. Очень часто мне задают вопрос – куда же бьют стримеры? Я эту картинку я уже показывал в статье про плазменный шар, но покажу еще раз, и отвечу на этот вопрос — стримеры бьют в землю! И таким образом они замыкают ток, показанный на картинке синим цветом.ЗаземлениеТаким образом, если заземление будет плохое, стримерам будет некуда деваться и им придется бить в теслу (замыкать свой ток), вместо того, чтобы извергаться в воздух. Меня спрашивали – обязательно ли заземлять теслу? Итак, ответ: заземление для теслы – обязательно [2][3]. [1]: Существуют трансформаторы Тесла без первичной обмотки. У них питание подается прямо на “земляной” конец вторички. Такой метод питания называется “бэйзфид” (basefeed). Иногда, в качестве источника бэйзфидного питания используется другой трансформатор Тесла, такой метод питания называют “магниферным” (Magnifier).[2]: Существуют так называемые биполярные теслы, они отличаются тем, что разряд происходит не в в воздух, а между двумя концами вторичной обмотки. Таким образом, путь тока легко может замкнуться и заземление не нужно.Биполярные теслы[3]: теоретически, для теслы можно вместо заземления использовать так называемый противовес – искусственное заземление в виде большего проводящего предмета. Практических конструкций с противовесами очень мало. Внимание! Изготовление тесел с противовесами представляет намного большую опасность, чем тесел с простым заземлением, потому как вся конструкция находится под высоким относительно земли потенциалом. А относительно большая емкость между противовесом и окружающими предметами способна негативно на них повлиять.[4]: Это правило справедливо для “пней” – вторичных обмоток с отношением длинны к диаметру до 5:1[5]: Это правило справедливо для тесел с мощностью меньше 20кВАПервая часть этой статьи была обзорной. Теперь пора перейти к чему-то более практическому. В этой части я расскажу про принцип работы Трансформатора Тесла на разряднике — SGTC.Трансформатора ТеслаИстория и описаниеSGTC (Spark Gap Tesla Coil), СГТЦ, Трансформатор Тесла на разряднике (или, что то же самое, на искровом промежутке) – это исторически самый первый вид трансформаторов Тесла. Сам Никола изготавливал только такие трансформаторы. В том числе и знаменитый “Уорденклиф” был построен по топологии SGTC. Если взглянуть на схему, то этот вид трансформаторов покажется довольно простым. Однако практическая реализация этой схемы требует довольно труднодоступных и дорогих деталей. Тем не менее, сегодня этот тип остается самым распространенным. Причиной тому – очень красивые “ветвистые” и длинные стримеры. Этот вид обладает самым высоким отношением длина разряда/сложность изготовления. Принцип функционированияИзначально ток, отдаваемый высоковольтным трансформатором T1 заряжает конденсатор Cp через дроссель L1. Чем меньше индуктивность дросселя и емкость конденсатора, тем быстрее происходит заряд.Принцип функционированияСо временем, напряжение на конденсаторе становится настолько высоким, что происходит пробой разрядника. Дуга в разряднике — прекрасный проводник, поэтому конденсатор Cp и катушка Lp оказываются соединены, образуя параллельный колебательный контур (Как только дуга разрывается, колебательный контур перестает существовать). Благодаря энергии, которая содержалась в конденсаторе, в этом контуре происходят колебания.Принцип функционированияВо время этих колебаний, конденсатор и катушка обмениваются энергией, часть которой рассеивается в виде тепла в обмотке Lp, а часть создает светошумовые эффекты в разряднике. Первичная и вторичная обмотки расположены рядом и поэтому, между ними существует магнитная связь. Благодаря этой связи, колебания тока в первичной обмотки наводят ток во вторичной обмотке. Индуктивность Ls и емкость Cs ( Cs – сумма собственной емкости вторичной обмотки и тороида ) образуют еще один параллельный колебательный контур. Этот контур называется вторичным. Номиналы всех компонентов выбираются так, чтобы резонансные частоты первичного и вторичного контуров совпадали. Энергия передается из первичного контура во вторичный, и, со временем, вся она окажется там. Этот момент называется “узел энергии первичной обмотки”. Амплитуда колебаний и тока и напряжения первичной обмотки в этот момент становятся равной нулю. Однако процесс обмена энергии на этом не заканчивается.Процесс обмена энергииВ идеальной ситуации когда ток через первичную обмотку прекращается, разрядник G1 перестает проводить ток. К сожалению, на практике этого очень сложно добиться, разрядник продолжает проводить. Из-за этого, энергия возвращается обратно из вторичной обмотки в первичную. Так-же, как и в предыдущем абзаце, существует такой момент, когда вся энергия вторичной обмотки возвратиться обратно (этот момент называется узлом энергии вторичной обмотки). Энергия будет переходить из одного контура в другой до тех пор пока дуга в разряднике G1 не погаснет. Когда дуга погаснет, оставшаяся энергия окажется “запертой” во вторичном контуре и постепенно рассеется, а конденсатор Cp начнет опять заряжаться через дроссель L1. Дальше все повториться снова. Частоту повторений этого цикла называюти BPS (Beats Per Second, Разрядов в секунду). Чем сильнее связаны контура (чем ближе одна катушка к другой), тем быстрее контура будут обмениваться энергией. Сильно маленький коэффициент связи ( меньше 0.05 ) приведет к тому, что вся энергия рассеется в первичном контуре, так и не добравшись во вторичный. Большой коэфицент связи потребует расположить первичную и вторичную обмотки рядом, из-за чего между ними будут проскакивать стримеры.КвенчингБыстрое размыкание разрядника (в течении нескольких узлов) является индикатором хорошо настроенной теслы, оно означает, что вся энергия буквально сразу-же уходит в стример, а не расходуется на разрушение деталей теслы и создание шума в разряднике. Затухание дуги разрядника англоязычные коллеги называют quenching (“квенчинг“). Добиться хорошего квенчинга можно:• Выбором подходящего размера тороида, положения и размера разрядника• Посредством изготовления разрядника из массивных деталей с большей рассеиваемой мощностью, принудительным его разрыванием.• Понижением тока в первичном контуре. Это можно сделать, используя большую Lp, и маленькую Cp. Правда, в таком случае, для сохранения мощности придется увеличить напряжение трансформатора T1.Разделение частотДаже если оба контура (и первичный и вторичный) по отдельности имели одинаковую резонансную частоту, все меняется при появлении между контурами магнитной связи. Каждая катушка “видит” часть емкости противоположного контура, из-за этого резонансные частоты контуров расползаются. Чем больше коэффициент связи, тем большую часть емкости видит противоположная катушка и тем больше расползаются резонансные частоты.Разделение частотСкомпенсировать этот эффект можно уменьшением коэффициент связи обмоток. Гугл тоже очень много знает про связанные контураСвязанные контураСвязанные контура удобно представлять “на пальцах” как связанные маятники. Более подробно про такую аналогию можно почитать тутhttp://physics.nad.ru/Physics/Cyrillic/link_txt.htmДля чего нужен балласт?Многие начинающие не понимают, для чего нужен балласт. Итак, балласт предназначен для того, чтобы:• Дать возможность дуге в разряднике G1 потухнуть. Если убрать балласт, разрядник будет замыкать высоковольтный трансформатор и тесла работать не будет. • Уменьшить ток зарядки емкости Cp. Если этого не сделать, ток через высоковольтный трансформатор может стать совсем неприличными и разрушить его. • Балласт так-же часто играет роль сетевого фильтра и не позволяет помехам из теслы вернуться в сеть и вывести из строя бытовую технику.Как видно, балласт очень важная штука. Не забывайте про него!Типы SGTCТрансформаторы Тесла на разряднике делятся на несколько подклассов•ACSGTC – Трансформаторы, которые питаются невыпрямленным сетевым напряжением.ACSGTC – Трансформаторы•DCSGTC – Отличается от ACSGTC тем, что на конденсаторы подается выпрямленное напряжение. Это позволяет увеличить КПД (получать при той-же мощности более длинные стримеры) и сделать трансформатор более стабильным, однако требует более сложных расчетов, и нескольких дополнительных дефицитных компонентов.DCSGTCРекомендую почитать еще Знаменитый сайт Ричи http://www.richieburnett.co.uk/


АКЦИЯ!!! Стоимость любого товара до октября всего 2000 рублей
Контакты:

Your details were sent successfully!

Как  нас найти

Искать не надо приезжайте к нам в северную столицу 

Санкт Петербург, Приморский район,  м. Пионерская

  • w-facebook
  • Twitter Clean
  • google+

​© Copyright 2023 Moving Co. Proudly created with Wix.com

bottom of page